

Performance and Safety Evaluation of High-rate 18650 Lithium IronPhosphate Cells

Judith Jeevarajan, Ph.D.

NASA- JSC

Brad Strangways and Tim Nelson

Symmetry Resources Inc.

NASA Battery Workshop November, 2009

Judith Jeevarajan/NASA-JSC

Contents

- Introduction
- Rate Capability
- Performance at Different Temperatures
- Vent and Burst Test
- Safety Tests

Introduction

- The A123 cell has the LiFePO₄ olivine Li-ion chemistry
- Capacity: 1.1 Ah
- Model # : APR18650M1A
- Mass: 39.26 g(~92 Wh/kg)
- Voltage range: 3.6 to 2.0 V
- Cells have a more robust cell construction than the 26650 cells tested in 2007

Tests Performed

- Rate Capability
- Thermal environment capability
- High-power pulse capability
- External short
- Simulated Internal short
- Overdischarge into reversal
- Heat-to-Vent
- Overcharge at single cell and 6-cell string levels

Fast Charge Test on the A123 18650 Cells

Fast Charge Test on A123 18650 Cells

Performance of A123 18650 Cells at Different **Temperatures**

Pulse Performance of A123 26650 Cells at Different Temperatures

Low Temperature Pulse Performance for the A123 26650 Cells

Discharge of A123 18650 Cells at -30 °C

Maximum Pulse Capability for the A123 18650 Cells

Maximum Pulse Capability for the A123 26650

Pulse Load: 130 A

Vent and Burst Pressure Test for A123 Cells

18650 Cell:

Vent: 539 and 485 psi

Burst: 800 to 849 psi

26650 Cell:

Vent: approx. 320 to 340 psig

Burst: approx. 425 psig

Simulated Internal Short (Crush) for A123 18650 Cells

Simulated Internal Short (Crush) for A123 26650

Overdischarge Into Reversal Test on A123 18650 Cells

Overdischarge of String (3S) of A123 18650 Cells

Heat-to-Vent Test on A123 18650 Cells

No flame or sparks during venting

Heat-to-Vent Test on A123 26650 Cells

18650 Cells

External Short Circuit Test on A123 18650 Cells

External Short Circuit Using Two Different Loads (26650 Cells)

Overcharge Test on A123 18650 Cells

NASA

Overcharge Test at 1C Rate to 12 V on 26650

Overcharge at 1 C Rate on a 6-Cell Series String of A123 18650 Cells

Overcharge at 1 C Rate on a 6-Cell Series String (26650 Cells)

Six-Cell String Overcharge Test on 26650 Cells

Conclusions

- Performance tests of the A123 under different load currents and at different temperatures have been performed
- Cells have shown excellent cycle life performance under the conditions tested except for the -30 °C
- Cells have fast charge and discharge capability as well as high rate pulse capability
- The safety tests indicate that the cells are tolerant to an overdischarge into reversal at the single cell and series string level; the cells vented and sprayed electrolyte under external short circuit conditions and produced a lot of smoke during the hear-to-vent test; CID opening was recorded under overcharge conditions at the single cell and series string level; no cell disassembly under overcharge in a string configuration; cell disassembly observed in one out of 3 simulated internal short tests.
- The burst to vent ratio was approx 1.5.
- The 18650 cells have a more robust design making them more tolerant to off-nominal conditions such as overcharge.

Acknowledgment

T/J Technologies/A123: Les Alexander

SRI: Brad Strangways, Tim Nelson